Hankel operators in von-Neumann-Schatten classes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schur multiplier projections on the von Neumann-Schatten classes

For 1 ≤ p < ∞ let Cp denote the usual von Neumann-Schatten ideal of compact operators on 2. The standard basis of Cp is a conditional one and so it is of interest to be able to identify the sets of coordinates for which the corresponding projection is bounded. In this paper we survey and extend the known classes of bounded projections of this type. In particular we show that some recent results...

متن کامل

Lower Bounds for Eigenvalues of Schatten-von Neumann Operators

Let Sp be the Schatten-von Neumann ideal of compact operators equipped with the norm Np(·). For an A ∈ Sp (1 < p <∞), the inequality [ ∞ ∑ k=1 |Reλk(A)| ] 1 p + bp [ ∞ ∑ k=1 | Imλk(A)| ] 1 p ≥ Np(AR)− bpNp(AI) (bp = const. > 0) is derived, where λj(A) (j = 1, 2, . . . ) are the eigenvalues of A, AI = (A − A∗)/2i and AR = (A + A∗)/2. The suggested approach is based on some relations between the ...

متن کامل

Continuity and Schatten–von Neumann Properties for Pseudo–Differential Operators and Toeplitz operators on Modulation Spaces

Let M (ω) be the modulation space with parameters p, q and weight function ω. We prove that if p1 = p2, q1 = q2, ω1 = ω0ω and ω2 = ω0, and ∂ a/ω0 ∈ L ∞ for all α, then the Ψdo at(x,D) : M p1,q1 (ω1) → M22 (ω2) is continuous. If instead a ∈ M p,q (ω) for appropriate p, q and ω, then we prove that the map here above is continuous, and if in addition pj = qj = 2, then we prove that at(x,D) is a Sc...

متن کامل

Schatten Class Membership of Hankel Operators on the Unit Sphere

Let H(S) be the Hardy space on the unit sphere S in C, n ≥ 2. Consider the Hankel operator Hf = (1 − P )Mf |H(S), where the symbol function f is allowed to be arbitrary in L(S, dσ). We show that for p > 2n, Hf is in the Schatten class Cp if and only if f − Pf belongs to the Besov space Bp. To be more precise, the “if” part of this statement is easy. The main result of the paper is the “only if ...

متن کامل

An Interesting Class of Operators with Unusual Schatten–von Neumann Behavior

We consider the class of integral operators Qφ on L (R+) of the form (Qφf)(x) = ∫ ∞ 0 φ(max{x, y})f(y)dy. We discuss necessary and sufficient conditions on φ to insure that Qφ is bounded, compact, or in the Schatten–von Neumann class Sp, 1 < p < ∞. We also give necessary and sufficient conditions for Qφ to be a finite rank operator. However, there is a kind of cut-off at p = 1, and for membersh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 1988

ISSN: 0019-2082

DOI: 10.1215/ijm/1255989225